

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0160 of 21 April 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Injection system fischer Powerbond Product family Bonded anchor for use in concrete to which the construction product belongs fischerwerke GmbH & Co. KG Manufacturer Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND Manufacturing plant fischerwerke This European Technical Assessment 15 pages including 3 annexes contains This European Technical Assessment is Guideline for European technical approval of "Metal issued in accordance with Regulation (EU) anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, No 305/2011, on the basis of used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-12/0160

Page 2 of 15 | 21 April 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 21 April 2016

European Technical Assessment ETA-12/0160 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The injection system fischer Powerbond is a bonded anchor consisting of a cartridge with injection mortar fischer FIS PM or FIS HB, an anchor rod and the corresponding fischer Power Sleeve FIS PS.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	See Annex C 1 to C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-12/0160

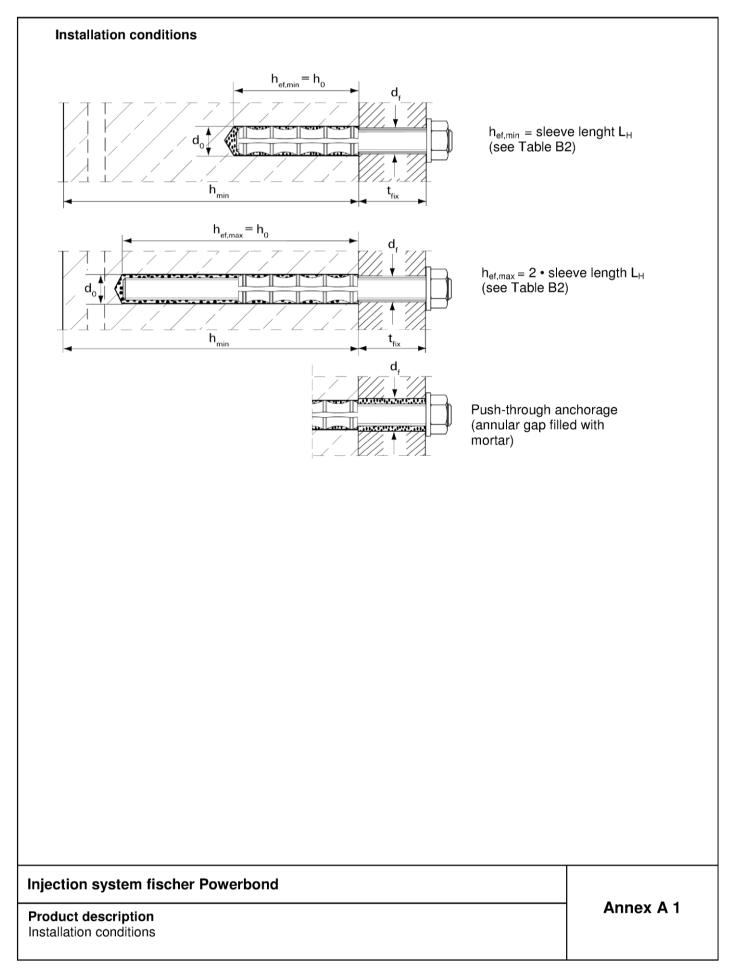
Page 4 of 15 | 21 April 2016

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 21 April 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Lange

Page 5 of European Technical Assessment ETA-12/0160 of 21 April 2016

Page 6 of European Technical Assessment ETA-12/0160 of 21 April 2016

Sealing cap Static mixer Sealing cap	Shuttle cartridge (360 ml and 950 ml) Imprint: FIS HB or FIS PM, processin travel scale, curing times and proces volume, hazard code, shelf life Installational and additional and additionand additional and additional and additional	ng notes, piston sing times, size, Interdented anticological and a size of the
	shelf life	
	- համահանահանանանանանանանանանանանանանանանա	
	undaahadaadaadaadaadaadaadaadaadaadaadaada	annan adamha da a hadaa hadaa da ad
Anchor rod Size: M10, M12, M16, M20, M24	D. FIS PS M24	Hexagon nut
Injection system fischer Powerbond		
Product description Cartridge, static mixer, steel parts		Annex A 2

Part	Description	Material								
1	Mortar cartridge	Mortar, hardener, fillers								
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C						
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated \geq 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662; 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$ fracture elongation	Property class 50 or 80 EN ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation						
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4666 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014						
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2013 zinc plated ≥ 5μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4666 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014						
5	Power Sleeve	Stainless st	eel A2 or A4	1.4565; 1.4529						

Injection system fischer Powerbond

Product description Materials Annex A 3

•	ions of intend Overview use		e: ories and performance categories						
Anchorage	s subject to		FIS HB or	FIS PM	with				
			Anchor rod	with	Power Sleeve				
Hammer dr	rilling		a	all sizes					
Diamond d	mond drilling Size M10, M12, M16				M16				
Static and	cor	acked Icrete	all sizes		Tables				
quasi static load, in	cr	acked ncrete	all sizes		B2, C1; C2; C3; C4				
Use	Dry or wet co	ncrete	a	ll sizes					
category	Floode	d hole	a	all sizes					
Installation	temperature		-5 °C bis +40 °C						
			0° to +80 °C (max. long term temperature +50 °C and max. short term temperature +80 °C)						

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist

(stainless steel or high corrosion resistant steel)

Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
particular aggressive conditions exist (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

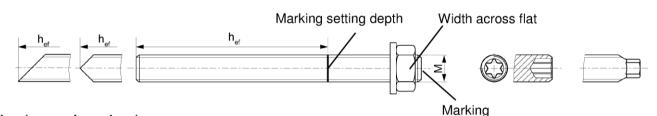
- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · In case of aborted hole: The hole shall be filled with mortar
- · Marking and keeping the effective anchorage depth
- Overhead installation is allowed

Injection system fischer Powerbond

Intended Use Specifications

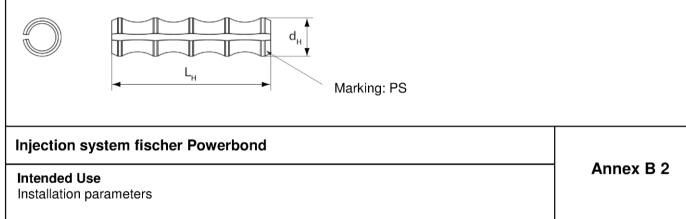

Annex B 1

Fable B2: Installation p	arameters							
Size (anchor rod)				M10	M12	M16	M20	M24
Width across flat		SW	[mm]	17	19	24	30	36
Nominal drill bit diamete	ər	do	[mm]	14	16	20	25	28
Depth of drill hole		ho	[mm]			$h_0 = h_{ef}$		
Corresponding Power S	Sleeve	FIS	[-]	PS M10	PS M12	PS M16	PS M20	PS M24
Length of sleeve		L _H	[mm]	60	72	96	120	144
Diameter of sleeve			[mm]	14	16	20	25	28
Effective anchorage depth ¹⁾		h _{ef,min}	[mm]	60	72	96	120	144
6 • d to 12 • d	h _{ef,max}	[mm]	120	144	192	240	288	
Minimum edge distand	ce and minimum			, ≤ h _{ef} ≤ h _{ef}	,max			
Cracked concrete		$\mathbf{S}_{\min} = \mathbf{C}_{\min}$	[mm]	50	55	60	80	100
Uncracked concrete		$S_{min} = C_{min}$	[mm]	55	55	65	80	100
Diameter of clearance	Pre positioned anchorage	df	[mm]	12	14	18	22	26
hole in the fixture ²⁾	Push through anchorage	d _f	[mm]	15	17	21	26	30
Minimum thickness of c	oncrete member	h _{min}	[mm]	h _{ef} + 30 (≥ 100)		h _{ef} +	- 2d ₀	
Max. torque moment		T _{inst,max}	[Nm]	20	40	60	100	120

 $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible

²⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

fischer anchor rods



Marking (on random place):

Property class 8.8, stainless steel, property class 80 or high corrosion-resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel, property class 50: •• Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Marking of embedment depth

fischer Power Sleeve

Page 10 of European Technical Assessment ETA-12/0160 of 21 April 2016

English translation prepared by DIBt

TableB3: Parameters of steel brush FIS BS Ø Drill bit diameters [mm] 14 16 20 25 28 Steel brush diameters d_b [mm] 16 20 25 27 30


				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
U. C. E. Sull	In Such Strate	1. 1. 1. 1. VII.	Chu Linh Hill in	
		idalida Hida Hida Hida		
	ארי יווי יווי יווי יווי		alle alle alle alle alle alle a	///*

#### Table B4: Maximum processing times of the mortar and minimum curing times

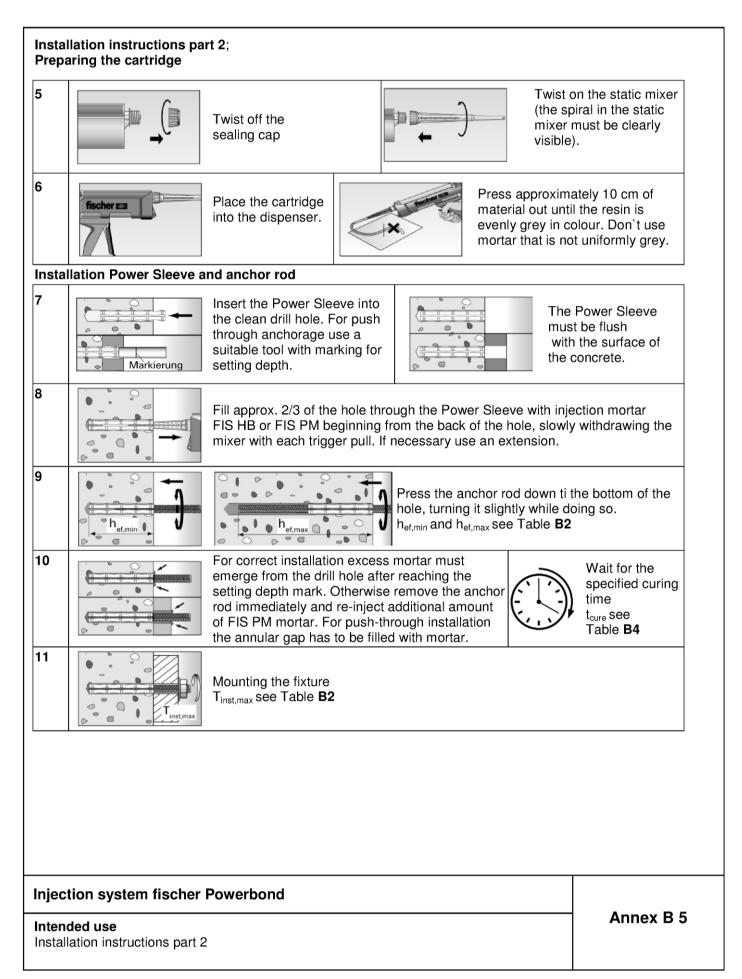
	oncre perati		Minimum curing time ¹⁾ t _{cure} [ Minutes ]	Maximum processing time ²⁾ t _{work} [ Minutes ]
	[ ℃ ]		FIS HB / FIS PM	FIS HB / FIS PM
-5	to	±0	360	
>±0	to	+5	180	
>+5	to	+10	90	15
>+10	to	+20	35	6
>+20	to	+30	20	4
>+30	to	+40	12	2

¹⁾ In wet concrete or flooded holes the curing times must be doubled. ²⁾ The working temperature of the mortar must be at least  $+5 \,^{\circ}$ C ³⁾ The base temperature during the curing time must not fall below  $-5 \,^{\circ}$ C.

### **Injection system fischer Powerbond**

### Intended Use

Cleaning tools Processing times and curing times


Annex B 3



Inst	allation instructions par	rt1			
<u>Dril</u> 1	ling and cleaning the ho	Drill the hole. Drill hole diameter $d_0$ and diameter $d_0$ and drill hole depth $h_0$ see Table <b>B2</b>			
2	2x -	Size M10, M12, M16 Blow out the drill hole two times with manual pump			
3		Brush the drill hole two tim the bottom of the hole. If n natural resistance while er and must be replaced with Diameters of brushes d _b s	eeded with extension. The itering the bore hole. If no a proper brush.	e brush m	ust produce
4	2X m	Size M10, M12, M16 Blow out the drill hole two times with manual pump			
Dril	ling and cleaning the ho	e (drilling with diamond	drill bit)		
1		Drill the hole. Drill hole diameter $d_0$ and drill hole depth $h_0$ see Table <b>B2</b>		draw it Flush th	he drill core and out. he drill hole until er comes clear.
2	2x	Blow out the drill hole two using oil-free compressed (p > 6 bar).			
3	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	the bottom of the hole. If	ntering the bore hole. If no h a proper brush.	ne brush r	nust produce
4	2x	Blow out the drill hole two using oil-free compressed air (p > 6 bar).	times,		
	ation avatam firshaw	Powerband			
nje	ction system fischer	rowerbond			Annov D 4
	<b>nded use</b> allation instructions part 1				Annex B 4

# Page 12 of European Technical Assessment ETA-12/0160 of 21 April 2016





#### Page 13 of European Technical Assessment ETA-12/0160 of 21 April 2016

English translation prepared by DIBt



Size					M10	M12	M16	M20	M24	
Steel f	ailure									
	Steel zinc plat	Prop		[kN]	29	43	79	123	177	
ŝ		c c	ass 8.8	[kN]	47	68	126	196	282	
io <u> </u>	Stainless steel	el Prop	orty50	[kN]	29	43	79	123	177	
e N	A4		lass/U	[kN]	41	59	110	172	247	
nce	<u></u>	U	80	[kN]	47	68	126	196	282	
Characteristic resistance N _{Rk,s}	High corrosion	n Prop	orty 50	[kN]	29	43	79	123	177	
ssi	resistance		lace 70 '	[kN]	41	59	110	172	247	
0 2	steel C	U	80	[kN]	47	68	126	196	282	
	Steel zinc plat	Prop		[-]			1,50			
		c c	ass 8.8	[-]			1,50			
>	Stainless stee	el Prop	orty 50	[-]			2,86			
N	A4		/0	[-]			1,87			
Partial safety factor $\gamma_{Ms,N}$	A4	U	80 . 50	[-]			1,50			
ial ۲	High corrosio	esistand		[-]			2,86			
art	resistand			[-]	1,50					
ር ወ	steel C	U	lass <u>70</u> 80	[-]	1,60					
Pullou	t and concret	e cone failure	e in cracke	ed concret	te C20/25					
Diame	ter for calculati	ion	d	[mm]	10	12	16	20	24	
Charao	cteristic resista	nce	$ au_{Rk,p}$	[N/mm ² ]	10	10	10	10	8	
actor	acc. CEN/TS	1992-4:2009		[]			7,2			
	n 6.2.2.3		k _{cr}	[-]			7,2			
	t and concret		e in uncra							
Charao	cteristic resista	nce	$ au_{Rk,p}$	[N/mm ² ]	13	13	13(12) ³⁾	11,5	11	
actor	acc. CEN/TS	1992-4:2009		[_]			10,1			
Section	n 6.2.2.3		k _{ucr}	[-]			-			
		_	C25/30	[-]			1,06			
		_	C30/37	[-]			1,12			
ncreas	sing factor for	)// -	C35/45	[-]			1,19			
Rk,p		Ψc -	C40/50	[-]			1,23			
		_	C45/55	[-]			1,27			
			C50/60	[-]			1,30			
	listance	h _{ef} / d ≤ 8	C _{cr,sp}	[mm]	1,75 • h _{ef}	1,85 • h _{ef}	1,95 • h _{ef}	2 • h _{ef}	2 • h _{ef}	
		$h_{ef} / d > 8$	C _{cr,sp}	[mm]			1,5 • h _{ef}			
Spacin			S _{cr.sp}	[mm]			2 • c _{cr,sp}			
	ation safety fa									
	d wet concrete	)	0/ 0/	[-]			1,0			
	d hole		$\gamma_2 = \gamma_{inst}$	[-]			1,2			

 $^{1)}$  In absence of other national regulations  $^{2)}f_{uk}=700~N/mm^2;~f_{yk}=560~N/mm^2$   $^{3)}h_{ef}>9d$ 

### **Injection system fischer Powerbond**

#### Performances

Characteristic values under tension load

Annex C 1

#### Deutsches Institut DIBt für Bautechnik

Size					M10	M12	M16	M20	M24
Steel	failure without lever	arm							
	Steel zine plated	Property	5.8	[kN]	15	21	39	61	89
	Steel zinc plated	class	8.8	[kN]	23	34	63	98	141
Characteristic resistance V _{Rk,s}	Stainlage steel	Droporty	50	[kN]	15	21	39	61	89
ist <	Stainless steel A4	Property-	70	[kN]	20	30	55	86	124
Characteristic resistance V _{Rk}	A4	class-	80	[kN]	23	34	63	98	141
rac stai	High corrosion	Droporty	50	[kN]	15	21	39	61	89
ha sis	resistance	Property-	70 ²⁾	[kN]	20	30	55	86	124
0 2	steel C	class-	80	[kN]	23	34	63	98	141
Steel	failure with lever arr	n	•					•	
	Stool zing plated	Property	5.8	[Nm]	37	65	167	324	561
ы	Steel zinc plated	class	8.8	[Nm]	60	105	266	519	898
nel	Steel zinc plated Stainless steel A4 High corrosion resistance steel C	Duanantu	50	[Nm]	37	65	166	324	561
isti Jor		Property-	70	[Nm]	52	92	233	454	785
g n		class-	80	[Nm]	60	105	266	519	898
din 1	High corrosion	Property- class-	50	[Nm]	37	65	166	324	561
Characteristic bending mome			70 ²⁾	[Nm]	52	92	233	454	785
ပီခ်ီခဲ	[≥] steel C		80	[Nm]	60	105	266	519	898
Partia	I safety factor steel	failure	•						
	Stool zing plated	Property	5.8	[-]			1,25		
	Steel zinc plated	class	8.8	[-]			1,25		
	Ctainlaga ataol	Droporty	50	[-]			2,38		
. 1)	Stainless steel A4	-Property - class	70	[-]			1,56		
γ _{Ms,V} 1)	A4	class-	80	[-]			1,25		
	High corrosion	Droportu	50	[-]			2,38		
	resistance	-Property - class	70 ²⁾	[-]			1,25		
	steel C	Class-	80	[-]			1,33		
Concr	rete pryout failure								
Sectio CEN/T	r k acc. to TR029 n 5.2.3.3 resp. k₃ acc ΓS 1992-4-5:2009 n 6.3.3	. to	k ₍₃₎	[-]			2,0		
Install	lation safety factors								
	tallation conditions	$\gamma_2 = \gamma_2$	Vinet	[-]			1,0		

 $^{2)} f_{uk} = 700 \text{ N/mm}^2; f_{yk} = 560 \text{ N/mm}^2$ 

### **Injection system fischer Powerbond**

#### Performances

Characteristic values under shear load

Annex C 2



#### Table C3.1: Displacements under tension load in uncracked concrete

Displacement-Factors for tension ¹⁾									
Size	M10	M12	M16	M20	M24				
$\delta_{\text{N0-Factor}}$	[mm/(N/mm ² )]	0,03	0,04	0,05	0,07	0,09			
$\delta_{N^{\infty}\text{-}Factor}$	[mm/(N/mm ² )]	0,05	0,06	0,08	0,10	0,13			

#### Table C3.2: Displacements under tension load in cracked concrete

Displacement-Factors for tension ¹⁾									
Size		M10	M12	M16	M20	M24			
$\delta_{\text{N0-Factor}}$	[mm/(N/mm ² )]	0,07	0,09	0,11	0,14	0,18			
$\delta_{N\infty\text{-Factor}}$	[mm/(N/mm ² )]	0,10	0,13	0,17	0,21	0,27			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$ 

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-}\mathsf{Factor}} \,\cdot\, \tau_{\mathsf{Ed}}$ 

 $(\tau_{Ed}$ : Design value of the applied tensile stress)

#### Table C4: Displacements under shear load

Displacement-Factors for shear load ¹⁾									
Size		M10	M12	M16	M20	M24			
$\delta_{V0-Factor}$	[mm/kN]	0,15	0,12	0,09	0,07	0,06			
$\delta_{N^{\infty}}$ -Factor	[mm/kN]	0,22	0,18	0,14	0,11	0,09			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \, \cdot \, \text{V}_{\text{Ed}}$ 

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-}\mathsf{Factor}}\,\cdot\,V_{\mathsf{Ed}}$ 

(V_{Ed} : Design value of the applied shear force)

#### **Injection system fischer Powerbond**

Performances Displacements Annex C 3