

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0340 of 20 October 2014

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Mungo Injection system MIT 600 RE for concrete

Bonded anchor with anchor rod for use in concrete

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Mungo 2

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-09/0340

Page 2 of 27 | 20 October 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z63541.14 8.06.01-295/14

European Technical Assessment ETA-09/0340

Page 3 of 27 | 20 October 2014

Specific Part

1 Technical description of the product

The "Mungo Injection System MIT 600 RE for concrete" is a bonded anchor consisting of a cartridge with injection mortar MIT 600 RE and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

Z63541.14 8.06.01-295/14

European Technical Assessment ETA-09/0340

Page 4 of 27 | 20 October 2014

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

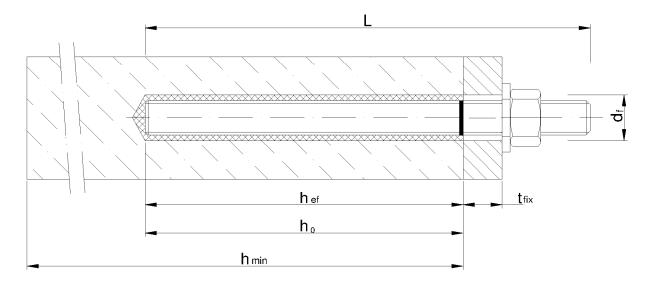
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

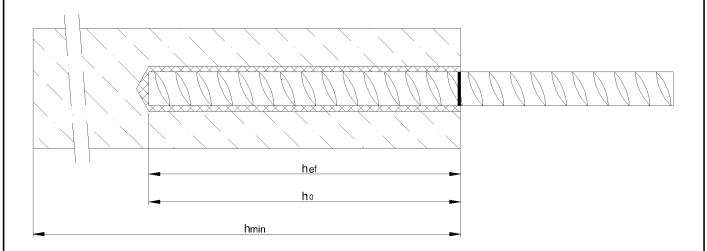
Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 20 October 2014 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt: Baderschneider

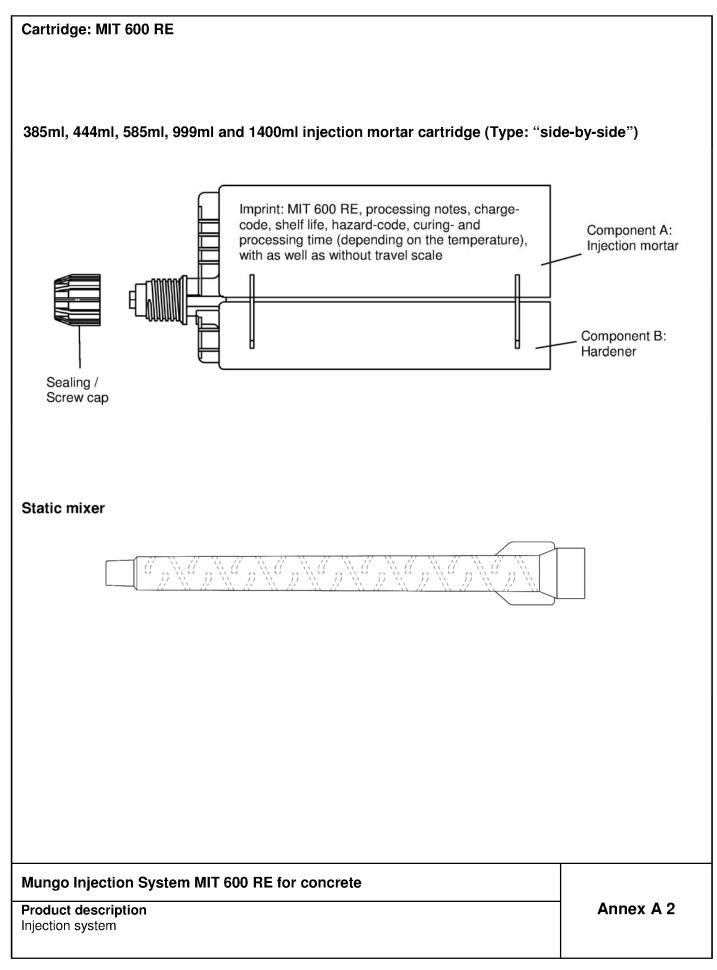

Z63541.14 8.06.01-295/14

Installation threaded rod

Installation reinforcing bar

d_f = diameter of clearance hole in the fixture

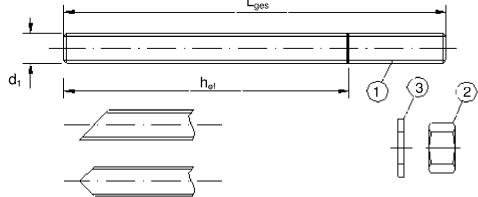
 t_{fix} = thickness of fixture


 h_{ef} = effective anchorage depth

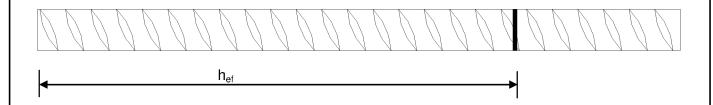
 h_0 = depth of drill hole

 h_{min} = minimum thickness of member

Mungo Injection System MIT 600 RE for concrete	
Product description Installed condition	Annex A 1



Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Mungo Injection System MIT 600 RE for concrete	
Product description Threaded rod and reinforcing bar	Annex A 3

Part	Designation	Material	
	, zinc plated ≥ 5 μm acc. to EN ISO 4042:19 , hot-dip galvanised ≥ 40 μm acc. to EN ISO		D:2009
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 5.8, 8.8, EN 1993-1-8)1
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 rod) EN IS Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	SO 898-2:2012, SO 898-2:2012,
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised	
Stain	lless steel	•	
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 > M24: Property class 50 EN ISO 3506- ≤ M24: Property class 70 EN ISO 3506-	1:2009 1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10 > M24: Property class 50 (for class 50 rd ≤ M24: Property class 70 (for class 70 rd	od) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN	10088-1:2005
ligh	corrosion resistance steel		
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:20 > M24: Property class 50 EN ISO 3506- ≤ M24: Property class 70 EN ISO 3506-	1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:20 > M24: Property class 50 (for class 50 rd ≤ M24: Property class 70 (for class 70 rd	od) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005
Reinf	forcing bars		
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	l 1992-1-1/NA:2013
	ngo Injection System MIT 600 RE for co	oncrete	

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- · Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Mungo Injection System MIT 600 RE for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod									
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective anabarage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >	0							
Thickness of fixture	t _{fix,max} [mm] <		1500						
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2:	Installation	parameters	for rebar
-----------	--------------	------------	-----------

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective anchorage depth	$h_{ef,min}$ [mm] =	60	60	70	75	80	90	100	112	128
Enective anchorage depth	h _{ef,max} [mm] =	96	120	144	168	192	240	300	336	384
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	$h_{ef} + 30 \text{ mm}$ $\geq 100 \text{ mm}$ $h_{ef} + 2d_0$								
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Mungo Injection System MIT 600 RE for concrete	
Intended Use	Annex B 2
Installation parameters	

Steel brush

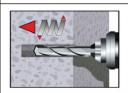
Parameter cleaning and setting tools Table B3:

Threaded Rod	Rebar	d₀ Drill bit - Ø	d₅ Brush - Ø	d _{b,min} min. Brush - Ø	Piston plug
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)
M8		10	12	10,5	
M10	8	12	14	12,5	
M12	10	14	16	14,5	No pieta pieta
	12	16	18	16,5	piston plug required
M16	14	18	20	18,5	•
	16	20	22	20,5	
M20	20	24	26	24,5	# 24
M24		28	30	28,5	# 28
M27	25	32	34	32,5	# 32
M30	28	35	37	35,5	# 35
	32	40	41,5	40,5	# 38

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

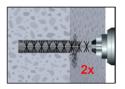
Recommended compressed air tool (min 6 bar)


Drill bit diameter (d₀): 10 mm to 40 mm

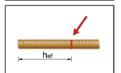
Piston plug for overhead or horizontal installation Drill bit diameter (d_0): 24 mm to 40 mm

Mungo Injection System MIT 600 RE for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2). In case of aborted drill hole: the drill hole shall be filled with mortar

or



or

Attention! Standing water in the bore hole must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of two times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.

For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used.

- 2b. Check brush diameter (Table B3) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b.min} (Table B3) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3).
- 2c. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of two times. If the bore hole ground is not reached an extension shall be used.

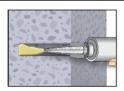
The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used.

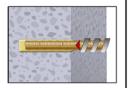
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

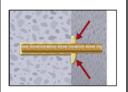
- Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used.
- 4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- 5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges is must be discarded a minimum of six full strokes.

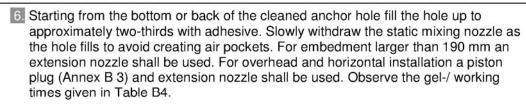
Mungo Injection System MIT 600 RE for concrete

Intended Use

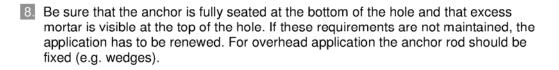

Installation instructions

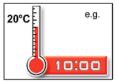

Annex B 4

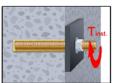

8.06.01-295/14 763802 14



Installation instructions (continuation)







7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).

10. After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Table B4: Minimum curing time

Concrete temperature	Gelling- working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ 5 °C	120 min	50 h	100 h
≥ + 10 °C	90 min	30 h	60 h
≥ + 20 °C	30 min	10 h	20 h
≥ + 30 °C	20 min	6 h	12 h
≥ + 40 °C	12 min	4 h	8 h

Mungo Injection System MIT 600 RE for concrete	
Intended Use	Annex B 5
Installation instructions (continuation)	
Curing time	

Anchor size threaded roo	k			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Steel failure													
Characteristic tension resisteel, property class 4.6	,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224		
Characteristic tension resisteel, property class 5.8		$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280		
Characteristic tension resistance, Steel, property class 8.8		$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449		
Characteristic tension resistainless steel A4 and HC property class 50 (>M24) a	R,	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281		
Combined pull-out and c	oncrete cone failure												
Characteristic bond resista	ınce in non-cracked con	crete C20/2	25										
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	15	15	15	14	13	12	12	12		
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0		
Temperature range II: 60°C/43°C	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5		
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0		
Temperature range III:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5		
72°C/43°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5		
Increasing factors for conc	rata	C30/37		1,04									
ψ_c		C40/50		1,08									
0-1111		C50/60					1,	10					
Splitting failure		1		1				. `	\				
Edge distance		C _{cr,sp}	[mm]		1,0) · h _{ef} ≤ :	$2 \cdot h_{ef} \bigg(2$	$5 - \frac{h}{h_{ef}}$	≤ 2,4 · I	h _{ef}			
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp					
Install safety factor (dry an	d wet concrete)	γ ₂	_		1	,2			1	,4	_		
Install safety factor (floode	d bore hole)	γ ₂					1	,4					

Mungo Injection System MIT 600 RE for concrete	
Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)	Annex C 1

(Design according to TR 029 or TR 045)

Anchor size threaded	rod			M 12	M 16	M 20	M24	M 27	M 30	
Steel failure						•	'	•		
Characteristic tension re Steel, property class 4.6	*	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	34	63	98	141	184	224	
Characteristic tension re Steel, property class 5.8	esistance,	N _{Bk s} =N ⁰ _{Bk s seis}	[kN]	42	78	122	176	230	280	
Characteristic tension re	esistance,	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	67	125	196	282	368	449	
Steel, property class 8.8 Characteristic tension re		IN _{Rk,s} =IN _{Rk,s,seis}	[KIV]		120	100	202	000	113	
Stainless steel A4 and I property class 50 (>M24	HCR,	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	59	110	171	247	230	281	
•	d concrete cone failure									
•	istance in cracked concret	e C20/25								
	The state of the s		[N/mm²]	7,5	6,5	6,0	5.5	5,5	5,5	
	dry and wet concrete	τ _{Rk,er} τ ⁰ _{Rk,seis,C1}	[N/mm²]	7,1	6,2	5,7	5,5	5.5	5,5	
T l	ary and wer concrete	τ ⁰ Rk,seis,C2	[N/mm²]	2,4	2,2		rformance [-,-	,	
Temperature range I: 40°C/24°C		T _{Rk,cr}	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4.0	
	flooded bore hole	τ ⁰ Rk,seis,C1	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0	
	nooded bore note	τ ⁰ Rk,seis,C2	[N/mm²]	2,4	2,1		rformance [,	
		T _{Rk.cr}	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
	dry and wet concrete	τ ⁰ Rk,seis,C1	[N/mm²]	4,3	3,8	3,4	3,5	3.5	3,5	
Tamana a a a banana 11.	ary and wet concrete	τ ⁰ Rk,seis,C2	[N/mm²]	1,4	1,4		rformance [1 -,-		
Temperature range II: 30°C/43°C		T _{Rk,cr}	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
flooded bore hole	τ ⁰ Rk,seis,C1	[N/mm²]	4,3	3,8	3,4	3.5	3,5	3.5		
	nooded bore note	τ ⁰ Rk,seis,C2	[N/mm²]	1,4	1,4		rformance [-,-	- , -	
	+	T _{Rk,cr}	[N/mm²]	4,0	3.5	3.0	3.0	3.0	3.0	
	dry and wet concrete	τ ⁰ Rk,seis,C1	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0	
Tamana anatoma na mana III.	ary and were somered	τ ⁰ Rk,seis,C2	[N/mm²]	1,3	1,2		rformance [
Temperature range III: 72°C/43°C		τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,0	3.0	3.0	3.0	
	flooded bore hole	τ ⁰ Rk,seis,C1	[N/mm²]	3,9	3,4	3,0	3.0	3.0	3,0	
		τ ⁰ _{Rk,seis,C2}	[N/mm²]	1,3	1,2			· ·		
		C30/37		-,-	-,-		erformance Determined (NPD)			
ncreasing factors for co only static or quasi-stat		C40/50					08			
Ψ _c		C50/60					10			
Splitting failure		030/00				- 1,	10			
Edge distance		C _{cr,sp}	[mm]		1,0 · h _{ef} ≤	≤ 2 · h _{ef} (2	$\frac{1}{5-\frac{h}{h_{ef}}}$	≤ 2,4 · h _{ef}		
Axial distance		S _{cr,sp}	[mm]				C _{cr,sp}			
Installation safety factor	(dry and wet concrete)	γ2		1	,2		1,4			
nstallation safety factor	(flooded bore hole)	γ2				1	,4			
							1			

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm			1	l							
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
Characteristic shear resistance, Steel, property class 4.6	V ⁰ _{Rk,s,seis,C1}	[kN]		ormance	14	27	42	56	72	88	
Otool, property oldso 4.0	V ⁰ _{Rk,s,seis,C2}	[kN]		mined PD)	13	25	No Perf	o Performance Determine			
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Characteristic shear resistance, Steel, property class 5.8	V ⁰ _{Rk,s,seis,C1}	[kN]		ormance	18	34	53	70	91	111	
	V ⁰ _{Rk,s,seis,C2}	[kN]		mined ⊃D)	17	31	No Perf	ormance I	Determine	d (NPD	
	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Characteristic shear resistance, Steel, property class 8.8	V ⁰ _{Rk,s,seis,C1}	[kN]	No Performance Determined		30	55	85	111	145	177	
	V ⁰ _{Rk,s,seis,C2}	[kN]		minea PD)	27	50	No Perf	ormance I	Determine	d (NPD	
Characteristic shear resistance.	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140	
Stainless steel A4 and HCR,	V ⁰ _{Rk,s,seis,C1}	[kN]		ormance mined	26	48	75	98	91	111	
property class 50 (>M24) and 70 (≤ M24)	V ⁰ _{Rk,s,seis,C2}	[kN]		minea PD)	40	44	No Perf	ormance I	Determine	d (NPD)	
Steel failure with lever arm											
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900	
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s,seis,C1}	[Nm]									
oteel, property class 4.0	M ⁰ _{Rk,s,seis,C2}	[Nm]			No Perl	ormance I	Determine	d (NPD)			
	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123	
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]									
	M ⁰ _{Rk,s,seis,C2}	[Nm]	1		No Peri	ormance [Jetermine	d (NPD)			
	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			N- D-d	·)t!	mined (NPD)			
	M ⁰ _{Rk,s,seis,C2}	[Nm]	No Performance D			Jetermine	a (NPD)				
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125	
Stainless steel A4 and HCR,	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Port	ormance [Jotormino	4 (NDD)			
property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis,C2}	[Nm]			No Pen	offiance i	Jetermine	u (INPD)			
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	k	[-]				2	,0				
Installation safety factor	γ2					1	,0				
Concrete edge failure			1								
Installation safety factor	γ ₂					1	,0				
Mungo Injection System MIT Performances Characteristic values of resistance for	600 RE fo	r concr	ete					An	nex C	3	

	aracteristic v								n loa	ds in		
Anchor size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure					•		•	•	•	•	•	
Characteristic tension resi	stance	N _{Rk,s}	[kN]					$A_s \cdot f_{uk}$				
Combined pull-out and o	oncrete cone failur	е										
Characteristic bond resista	ance in uncracked co	ncrete C20	/25									
Temperature range I:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II: 60°C/43°C	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III: dry	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37					•	1,04				
Increasing factors for cond Ψ_c	crete	C40/50						1,08				
		C50/60						1,10				
Splitting failure												
Edge distance c _{cr,sp} [mm]				$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$								
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation safety factor (d concrete)	ry and wet	γ2				1,2				1	,4	
Installation safety factor (fl	ooded bore hole)	γ ₂						1,4				

Mungo Injection System MIT 600 RE for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029)	Annex C 4

_	յ bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure				•		•	•				
Characteristic tension res	sistance	N _{Rk,s} =N ⁰ _{Rk,s,seis,C1}	[kN]				$A_s \cdot f_{uk}$				
Combined pull-out and	concrete cone failure										
Characteristic bond resis	tance in cracked concret	te C20/25									
		τ _{Rk,cr}	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5	
Temperature range I:	dry and wet concrete	τ ⁰ _{Rk,seis,C1}	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5	
40°C/24°C		$ au_{ m Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	τ ⁰ Rk,seis,C1	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0	
		$ au_{ m Rk,cr}$	[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5	
	dry and wet concrete	τ ⁰ Rk,seis,C1	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5	
Temperature range II: 60°C/43°C		τ _{Rk.cr}	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0	
	flooded bore hole	τ ⁰ Rk,seis,C1	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0	
			[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
Temperature range III: 72°C/43°C	dry and wet concrete	τ _{Rk,cr}		3,7	3,2	3,3	2,9	3,0	3,0	3,0	
		T Rk,seis,C1	[N/mm²]	,	<u> </u>			, 	,		
	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
		τ ⁰ Rk,seis,C1	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
Increasing factors for cor	ncrete	C30/37					1,04				
(only static or quasi-static $\psi_{ m c}$	c actions)	C40/50		1,08							
7.0		C50/60		1,10							
Splitting failure											
Edge distance		C _{cr,sp}	[mm]		1,0 · h	_{ef} ≤2·h	ef 2,5 -	$\left(\frac{h}{h_{ef}}\right) \le 2$	2,4 · h _{ef}		
Avial dietana		S _{cr,sp}	[mm]				2 c _{cr,sp}				
Axial distance	La			1,2 1,4							
	(dry and wet concrete)	γ2			,						

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure without lever arm				ı					I				
	$V_{Rk,s}$	[kN]				0,	50 · A _s ·	f _{uk}					
Characteristic shear resistance	V ⁰ _{Rk,s,seis,C1}	[kN]	Perfor Deter	lo mance mined PD)			0	44 • A _s •	$\mathbf{A_s} \cdot \mathbf{f_{uk}}$				
Steel failure with lever arm			•	•									
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.	2 • W _{el} •	f_{uk}					
onalidationalid behaling moment	M ⁰ _{Rk,s,seis,C1}	[Nm]			No F	Performa	nce Dete	rmined (N	NPD)				
Concrete pry-out failure													
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]					2,0						
Installation safety factor	γ2						1,0						
Concrete edge failure													
Installation safety factor	γ ₂						1,0						

Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure												
Characteristic tension resist Steel, property class 4.6	tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224	
Characteristic tension resist Steel, property class 5.8	tance,	$N_{\text{Rk,s}}$	[kN]	18	29	42	78	122	176	230	280	
Characteristic tension resistance, Steel, property class 8.8		N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449	
Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)		$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281	
Combined pull-out and co	oncrete failure											
Characteristic bond resistar	nce in non-cracked concrete	e C20/25										
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	15	15	15	14	13	12	12	12	
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0	
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5	
60°C/43°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0	
Temperature range III:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5	
72°C/43°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5	
		C30/37	1,04									
Increasing factors for concrete Ψ_c	ete	C40/50		1,08								
10		C50/60					1,	10				
Factor according to CEN/TS 1992-4-5 Section 6	5.2.2.3	k ₈	[-]				10),1				
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section 6	5.2.3.1	k _{ucr}	[-]				10),1				
Edge distance		C _{cr,N}	[mm]				1,5	i h _{ef}				
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}				
Splitting failure												
Edge distance		C _{cr,sp}	[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$								
Axial distance		S _{cr,sp}	[mm]				2 0	cr,sp				
Installation safety factor (dry	y and wet concrete)	γ2	<u> </u>		1	,2			1	,4		
Installation safety factor (flo	oded bore hole)	γ ₂					1	,4	-1.			

Mungo Injection System MIT 600 RE for concrete	
Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)	Annex C 7

(Design according to CEN/TS 1992-4 or TR 045)

Anchor size threaded ro	d			M 12	M 16	M 20	M24	M27	M30	
Steel failure										
Characteristic tension resi	stance,	$N_{Rk,s} = N_{Rk,s,seis}^{0}$	[kN]	34	63	98	141	184	224	
Steel, property class 4.6 Characteristic tension resi:	stance		+							
Steel, property class 5.8	starioc,	$N_{Rk,s} = N^0_{Rk,s,seis}$	[kN]	42	78	122	176	230	280	
Characteristic tension resi	stance,	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	67	125	196	282	368	449	
Steel, property class 8.8 Characteristic tension resi:	stance.									
Stainless steel A4 and HC	,	$N_{Rk,s} = N^0_{Rk,s,seis}$	[kN]	59	110	171	247	230	281	
property class 50 (>M24) a	· · · · · · · · · · · · · · · · · · ·									
Combined pull-out and o										
Characteristic bond resista	ance in cracked concrete C2	0/25	T :		T -	T -				
	day and wet a const	τ _{Rk,cr}	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5	
	dry and wet concrete	τ ⁰ _{Rk,seis,C1} τ ⁰ _{Rk,seis,C2}	[N/mm²]	7,1	6,2	5,7	5,5	5,5 Determine	5,5	
Temperature range I: 40°C/24°C			[N/mm²]	2,4 7,5	2,2 6,0	5,0	4,5	4,0	4,0	
10 0/21 0	flooded bore hole	$\tau_{Rk,cr} \\ \tau^0_{Rk,seis,C1}$	[N/mm²]	7,3	5,8	4,8	4,5	4,0	4,0	
	nooded bore note	τ ⁰ Rk,seis,C2	[N/mm²]	2,4	2,1	· ·	· ·	Determine		
		τ _{Rk,cr}	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
	dry and wet concrete	τ ⁰ Rk,seis,C1	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
Геmperature range II:		τ ⁰ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Perf		Determine	d (NPI	
60°C/43°C		$ au_{ m Rk,cr}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5	
	flooded bore hole	τ ⁰ _{Rk,seis,C1}	[N/mm ²]	4,3	3,8	3,4	3,5	3,5	3,5	
		τ ⁰ _{Rk,seis,C2}	[N/mm ²]	1,4	1,4	No Perf	ormance I	Determine	d (NPI	
		$ au_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,0	3,0	3,0	3,0	
	dry and wet concrete	τ ⁰ _{Rk,seis,C1}	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0	
Temperature range III:		τ ⁰ _{Rk,seis,C2}	[N/mm²]	1,3	1,2		1	Determine	- `	
72°C/43°C		τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	τ ⁰ Rk,seis,C1	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0	
		τ ⁰ _{Rk,seis,C2} C30/37	[N/mm²]	1,3	1,2	1	ormance i 04	Determine	a (NPL	
ncreasing factors for cond only static or quasi-static		C40/50					0 4 08			
V _c	actions,	C50/60					10			
Factor according to										
CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]			7	,2			
Concrete cone failure										
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{er}	[-]			7	,2			
Edge distance		C _{cr,N}	[mm]			1,5	i h _{ef}			
Axial distance		S _{cr,N}	[mm]			3,0	h _{ef}			
Splitting failure										
Edge distance		C _{cr,sp}	[mm]		1,0 · h _{ef}	$\leq 2 \cdot h_{ef} \left(2, \frac{1}{2} \right)$	$\left(5 - \frac{h}{h_{ef}}\right) \le$	≤ 2,4 · h _{ef}		
Axial distance		S _{cr,sp}	[mm]			2 0	cr,sp			
Installation safety factor (d	ry and wet concrete)	γ2	1	1	,2		-	,4		
Installation safety factor (fl	ooded bore hole)	γ ₂	1,2			1	1,4			

Z63802.14 8.06.01-295/14

Characteristic values of resistance for threaded rods under tension loads in cracked concrete

Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm				'		l					
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
Characteristic shear resistance, Steel, property class 4.6	V ⁰ _{Rk,s,seis,C1}	[kN]		ormance	14	27	42	56 72 88			
, , , , , , , , , , , , , , , , , , ,	V ⁰ _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	13	25	No Per	formance I	Determined	d (NPD)	
Chausatauiatia ah asu usaistausa	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Characteristic shear resistance, Steel, property class 5.8	V ⁰ _{Rk,s,seis,C1}	[kN]	No Performance		18	34	53	70	91	111	
	V ⁰ _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	17	31	No Per	formance I	Determined	d (NPD)	
Characteristic about registance	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Characteristic shear resistance, Steel, property class 8.8	V ⁰ _{Rk,s,seis,C1}	[kN]		ormance	30	55	85	111	145	177	
	V ⁰ _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	27	50	No Per	formance I	Determined	d (NPD)	
Characteristic shear resistance,	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140	
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	V ⁰ _{Rk,s,seis,C1}	[kN]	No Performance Determined (NPD)		26	48	75	98	91	111	
property class so (SWE+) and 70 (EWE+)	V ⁰ _{Rk,s,seis,C2}	[kN]	Determin	iea (NPD)	40	44 No Performance Determined (NPD)					
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0	,8				
Steel failure with lever arm											
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900	
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Per	formance I	Determined	H (NPD)			
	M ⁰ _{Rk,s,seis,C2}	[Nm]			110101	·					
Observants visitis have discuss as seen	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123	
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Per	formance I	Determined	d (NPD)			
	M ⁰ _{Rk,s,seis,C2}	[Nm]				1		· · ·			
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]		No Performance Deter			Determined	ned (NPD)			
	M ⁰ _{Rk,s,seis,C2}			I I		I		T			
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125	
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Per	formance [Determined	d (NPD)			
	M ⁰ _{Rk,s,seis,C2}	[Nm]									
Concrete pry-out failure Factor in equation (27) of	I										
CEN/TS 1992-4-5 Section 6.3.3	k ₃					2	,0				
Installation safety factor	γ ₂					1	,0				
Concrete edge failure ³⁾											
Effective length of anchor	l _t	[mm]				l _t = min(h	ef; 8 d _{nom})				
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation safety factor	γ_2					1	,0		•		
Mungo Injection System MIT	r 600 RE	for c	oncrete								

Anchor size reinforcing b	ar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure											I	1	
Characteristic tension resis	tance	N _{Rk,s}	[kN]	$A_s \cdot f_{uk}$									
Combined pull-out and co	oncrete failure	•	-	•									
Characteristic bond resista	nce in non-cracked concre	te C20/2	5										
Temperature range I:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11	
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0	
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5	
60°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0	
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0	
72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5	
	C30/37	,	1,04										
Increasing factors for concr Ψ _c	ete	C40/50	ľ	1,08									
		C50/60		1,10									
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]					10,1					
Concrete cone failure													
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{ucr}	[-]					10,1					
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}					
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}					
Splitting failure													
Edge distance	C _{cr,sp}	[mm]			1,0 · h	_{ef} ≤2·h _e	ef 2,5 -	$\frac{h}{h_{ef}}$ ≤ 2	.4 ⋅ h _{ef}				
Axial distance	xial distance			2 C _{cr.sp}									
Installation safety factor (dr	y and wet concrete)	γ2		1,2					1	1,4			
Installation safety factor (flo	oded bore hole)	γ2		1,4									

Mungo Injection System MIT 600 RE for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)	Annex C 10

	tance	Γ		•						1
Combined pull-out and co Characteristic bond resistan	tance									
Characteristic bond resistan		$N_{Rk,s} = N_{Rk,s,seis,C1}^{0}$ [kN] $A_s \cdot f_{uk}$								
dr	ncrete failure									
	nce in cracked concre	te C20/25								
		$ au_{Rk,cr}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	ry and wet concrete	τ ⁰ _{Rk,seis,C1}	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C		$ au_{Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0
flo	ooded bore hole	τ ⁰ Rk,seis,C1	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0
		$ au_{ m Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	ry and wet concrete	τ ⁰ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C		$ au_{ m Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
flo	ooded bore hole	τ ⁰ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0
		$ au_{ m Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
dr Temperature range III:	ry and wet concrete	τ ⁰ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
flo	flooded bore hole		[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
ncreasing factors for concrete		τ ⁰ _{Rk,seis,C1}					1,04			
(only static or quasi-static ad		C40/50					1,08			
Ψ _c		C50/60	50/60							
Factor according to CEN/TS 1992-4-5 Section 6	5.2.2.3	k ₈	[-]	7,2						
Concrete cone failure										
Factor according to CEN/TS 1992-4-5 Section 6	5.2.3.1	k _{cr}	[-]				7,2			
Edge distance		C _{cr,N}	[mm]				1,5 h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0 h _{ef}			
Splitting failure										
Edge distance		C _{cr,sp}	[mm]		1,0 ·	h _{ef} ≤2·h	$_{\rm ef} \left(2,5 - \frac{1}{r} \right)$	$\frac{h}{n_{\rm ef}}$ $\leq 2,4$	·h _{ef}	
Axial distance		S _{cr,sp}	[mm]				2 C _{cr,sp}			
Installation safety factor (dry	y and wet concrete)	γ ₂			1,2			1,	,4	
Installation safety factor (floo	oded bore hole)	γ ₂					1,4			
Mungo Injection S	System MIT 600	RE for concr	ete						 ex C 1	

Installation safety factor

1,0

		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32							
				I													
$V_{Rk,s}$	[kN]	0,50 • A _s • f _{uk}															
$V^0_{\text{Fik,s,seis,C1}} \qquad \text{[kN]} \qquad \begin{array}{c} \text{No} \\ \text{Performance} \\ \text{Determined} \\ \text{(NPD)} \end{array} \qquad \qquad 0,44 \cdot A_s \cdot f_{uk}$								f _{uk}									
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1 k ₂																	
·																	
M ^o _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk}															
M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)															
·		•															
k ₃						2,0											
Installation safety factor γ ₂								1,0									
·																	
If	[mm]				$I_f = m$	nin(h _{ef} ; 8	d _{nom})										
d _{nom}	[mm]	8	10	12	14	16	20	25	28	32							
	VRK,s VORK,s,seis,C1 K2 MORK,s,seis,C1 K3 Y2	oncrete (Design V _{Rk,s} [kN] V ⁰ _{Fik,s,seis,C1} [kN] k ₂ M ⁰ _{Rk,s} [Nm] M ⁰ _{Rk,s,seis,C1} [Nm]	oncrete (Design acco	oncrete (Design according Ø 8	V _{RK,S} [kN] V ⁰ _{RK,s,seis,C1} [kN] M ⁰ _{RK,s,seis,C1} [Nm] M ⁰ _{RK,s,seis,C1} [Nm] No Performance Determined (NPD) No Performance Determined (NPD)	oncrete (Design according to CEN/Triangle of the CEN/Triangle of	oncrete (Design according to CEN/TS 199 $0.50 \cdot A_s \cdot V_{Rk,s}$ $0.50 \cdot A_s \cdot V_{Rk,s,seis,C1}$ $0.50 \cdot A_s \cdot V_{Rk,seis,C1}$ $0.50 \cdot A_s \cdot V$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

γ2

Mungo Injection System MIT 600 RE for concrete	
Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 or TR 045)	Annex C 12

No Performance Determined (NPD)

Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25	under static and	quasi-statio	action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
Cracked concrete	C20/25 und	er static, quasi-st	atic and sei	smic C	1 action	l				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]			0,032	0,037	0,042	0,048	0,053	0,058
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]			0,21	0,21	0,21	0,21	0,21	0,21
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]		ormance mined	0,037	0,043	0,049	0,055	0,061	0,06
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]		PD)	0,24	0,24	0,24	0,24	0,24	0,24
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,06
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]			0,24	0,24	0,24	0,24	0,24	0,24
Cracked concrete	C20/25 und	ler seismic C2 acti	on							
Temperature range I:	$\delta_{N,seis(DLS)}$	[mm/(N/mm²)]			0,03	0,05				
40°C/24°C	$\delta_{N,seis(ULS)}$	[mm/(N/mm²)]			0,06	0,09	1			
Temperature range II:	$\delta_{N,seis(DLS)}$	[mm/(N/mm²)]		ormance mined	0,03	0,05	No Dout	ormonos ^r) atarmir =	4 (NDD
.0000/4000	$\delta_{\text{N,seis}(\text{ULS})}$	[mm/(N/mm²)]		minea PD)	0,06	0,09	ino Peri	ormance [Jetermine	u (INPD
		F (/) I (0) 7	,	,	0,03	0,05				
Temperature range III:	$\delta_{N,seis(DLS)}$	[mm/(N/mm²)]			0,03	0,05				

¹⁾ Calculation of the displacement

Table C14: Displacements under shear load¹⁾ (threaded rod)

[mm/kN]

Anchor size thre	Anchor size threaded rod				M 12	M 16	M 20	M24	M 27	M 30		
Non-cracked and cracked concrete C20/25 under static, quasi-static and seismic C1 action												
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		
Cracked concrete C20/25 under seismic C2 action												
All temperature	$\delta_{\text{V,seis}(\text{DLS})}$	[mm/kN]		ormance	0,2	0,1	No Porf	ormanco	Dotormino	4 (NDD)		

Determined

(NPD)

0,2

0,1

1) Calculation of the displacer

 $\delta_{\text{V,seis}(\text{ULS})}$

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-factor} \ \cdot \text{V};$

ranges

Mungo Injection System MIT 600 RE for concrete Annex C 13 **Performances** Displacements (threaded rods)

 $[\]delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $[\]delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

 $[\]delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-factor }\cdot V;$

Table C15: D	isplacen	nents under	tensio	า load ๋	^{I)} (reba	ır)					
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/	25 under static	and qua	asi-stati	c action	า					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range II:	δ_{No} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature range III: 72°C/43°C	δ_{No} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked concrete	C20/25 u	nder static, qua	si-statio	and se	eismic C	1 actio	n				
Temperature range I:	δ_{No} -factor	[mm/(N/mm²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]]	-	0,21	0,21	0,21	0,21	0,21	0,21	0,21
Temperature range II:	δ_{No} -factor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]]	-	0,24	0,24	0,24	0,24	0,24	0,24	0,24
Temperature range III:	δ_{No} -factor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	<u> </u>		0,24	0,24	0,24	0,24	0,24	0,24	0,24

 $^{^{1)}}$ Calculation of the displacement $\delta_{N0} = \delta_{N0}\text{-factor} \ \cdot \tau; \\ \delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \tau;$

Table C16: Displacement under shear load 1) (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete C20/25 under static, quasi-static and seismic C1 action											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{\text{V0}} = \delta_{\text{V0}}\text{-factor} &\cdot \text{V}; \\ &\delta_{\text{V}_{\infty}} = \delta_{\text{V}_{\infty}}\text{-factor} &\cdot \text{V}; \end{split}$$

Mungo Injection System MIT 600 RE for concrete	
Performances	Annex C 14
Displacements (rebar)	