

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0070 of 12 May 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	mungo Throughbolt m2, m2-C, m2-CG
Product family to which the construction product belongs	Torque-controlled expansion anchor made of galvanised steel of sizes M6, M8, M10, M12, M16 an M20 for use in non-cracked concrete
Manufacturer	Mungo Befestigungstechnik AG Bornfeldstrasse 2
	4603 Olten SCHWEIZ
Manufacturing plant	Mungo Werk Olten
This European Technical Assessment contains	14 pages including 3 annexes
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU)
	No 305/2011.

European Technical Assessment ETA-05/0070

English translation prepared by DIBt

Page 2 of 14 | 12 May 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z5445.15 8.06.01-344/14

European Technical Assessment ETA-05/0070 English translation prepared by DIBt

Page 3 of 14 | 12 May 2015

Specific Part

1 Technical description of the product

The mungo m2 is an anchor made of galvanised steel which is placed into a drilled hole and anchored by torque-controlled expansion. According to the size of washer the anchor versions are designated as m2, m2-C and m2-CG.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for design according to ETAG 001 Annex C and displacements	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic resistance under fire exposure	See Annex C 3 and C 4

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

Z5445.15 8.06.01-344/14

European Technical Assessment ETA-05/0070

Page 4 of 14 | 12 May 2015

English translation prepared by DIBt

3.8 General aspects

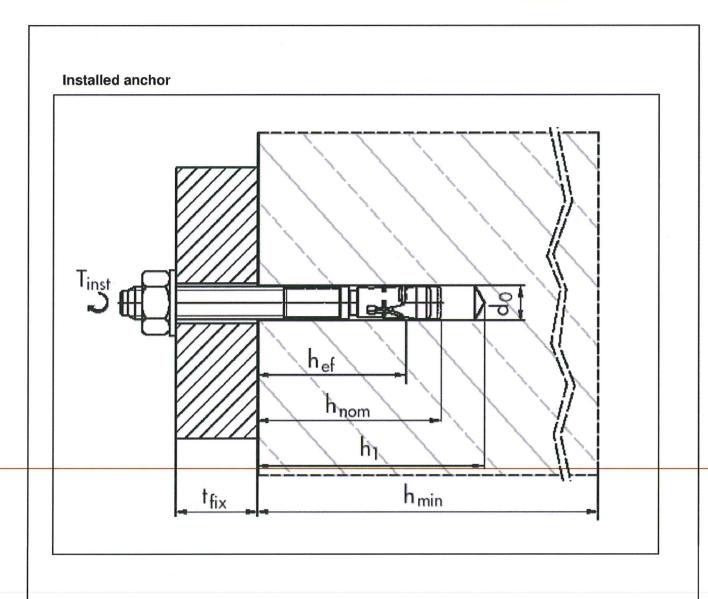
The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

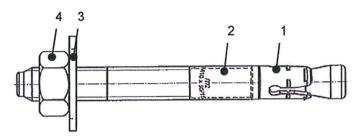
Issued in Berlin on 12 May 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt:

Lange

Legend: $h_{\text{ef}} \\$

= effective anchorage depth
= embedment depth
= depth of drill hole
= minimum thickness of concrete member h_1


= nominal diameter of drill bit d_0

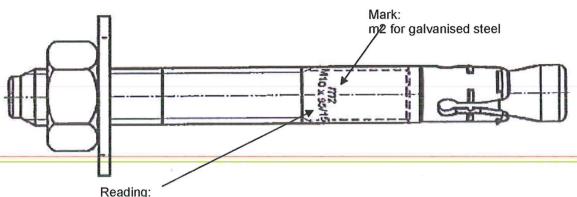
= thickness of fixture t_{fix} = installation torque $\mathsf{T}_{\mathsf{inst}}$

m2, m2-C, m2-CG	
Product description Installed condition	Annex A 1

Anchor type

- 1 expansion element
- 2 bolt
- 3 washer
- 4 hexagonal nut

Gestaltung Spreizbleche:



m2 M6 m2 M16 Typ A m2 M20

m2 M8 m2 M10 m2 M12

m2 M16 Typ B

Nominal diameter (e.g. M10) x anchor length (e.g. 95) x max. member thickness (e.g.15)

Anchor types:

m2 bolt m2 with washer EN ISO 7089:2000 and hexagonal nut DIN 934:1987-10 m2-C bolt m2 with washer EN ISO 7093-1:2000 and hexagonal nut DIN 934:1987-10 m2-CG bolt m2 with washer EN ISO 7094:2000 and hexagonal nut DIN 934:1987-10

m2, m2-C, m2-CG

Product description
Marking and denomination

Annex A 2

Table A1: Dimensions

Part	Designation				М6	M8	M10	M12	M16	M20
		C	k	[mm]	6	8	10	12	16	20
			h	[mm]	4	5,6	7,2	8,5	11,5	15,2
		d	s1	[mm]	5,25	7,05	8,9	10,7	14,5	-
1	Bolt	d	s2	[mm]	•	-	-	12	16	20
'	Boil	mi	ı l _G	[mm]	19	43	23	32	33	70
	ma: mir		x I _G	[mm]	62	120	120	120	120	120
			ı L	[mm]	50	80	95	80	90	130
		ma		[mm]	95	165	180	360	440	270
2	Expansion	type A	l _s	[mm]	9,5	13,2	15,2	17,5	19,3	21,6
	element	type B	Is.	[mini	-	-	-	-	19,7	-
		EN ISO	d_{u}	[mm]	12	16	20	24	30	37
		7089:2000	s	[mm]	1,6	1,6	2	2,5	3	3
3	Washer	EN ISO 7093-	du	[mm]	18	24	30	37	50	60
3	VVaSilei	1:2000	s	[mm]	1,6	2	2,5	3	3	4
		EN ISO	du	[mm]	22	28	34	44	56	72
		7094:2000	S	[mm]	2	3	3	4	5	6
4	Hexagonal	nut	sw	[mm]	10	13	17	19	24	30

m2, m2-C, m2-CG

m2, m2-C, m2-CG L>185 mm (M12 to M20)

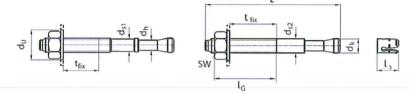


Table A2: Materials

	Part	Designation		Material
r	1 Bolt		L ≤ 185 mm	cold forged steel EN10263-2:2001, electroplated ≥ 5 μm
			L > 185 mm ¹⁾	free-cutting steel EN 10087:1998, electroplated ≥ 5 μm
	2	Expansion element	L ≤ 185 mm	cold rolled steel strip EN10139:1997, electroplated ≥ 5 μm
L			L > 185 mm ¹⁾	cold rolled stainless steel strip EN10088-2:2014, no coating
	3	Washer		cold rolled steel strip EN10139:1997, electroplated ≥ 5 μm
	4	Hexagonal nut		steel, property class 8, DIN 934:1987-10, electroplated ≥ 5 μm

¹⁾ valid for sizes M12 and M16, valid for size M20 independent of length

m2, m2-C, m2-CG	
Product description Dimensions and materials	Annex A 3

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loads
- Fire exposure

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- Non-cracked concrete

Use conditions:

 Structures subject to dry internal conditions (zinc coated steel)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with ETAG 001, Annex C, design method A, Edition August 2010
- Anchorages under fire exposure are designed in accordance with EOTA Technical Report TR 020, Edition May 2004
- · It must be ensured that local spalling of the concrete cover does not occur.

Installation:

- Hole drilling by hammer drilling only
- Anchor installation in accordance with the manufacturer's specifications using the appropriate tools carried out
 by appropriately qualified personnel and under the supervision of the person responsible for technical matters
 of the site.
- · Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor
- Check concrete strength before placing the anchor to ensure that the strength class of the concrete is covered by the product's assessment
- Positioning the drill holes without damaging the reinforcement
- · Cleaning the holes
- Edge distances and spacing not less than the specified values without minus tolerances
- Anchor installation such that the effective embedment depth is complied with. This compliance is ensured if the anchor's embedment mark doesn't exceed the concrete surface.
- The anchor may only be set once.
- In case of aborted holes: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it isn't in the direction of load application.
- Using a calibrated torque wrench for installation.

m2, m2-C, m2-CG	
Intended use Specifications	Annex B 1

Table B1: Installation parameters

Anchor size			М6	М8	M10	M12	M16	M20
Nominal drill hole diameter	d ₀	[mm]	6	8	10	12	16	20
Effective anchorage depth	h _{ef}	[mm]	40	50	58	68	80	100
Installation torque	T _{inst}	[Nm]	5	15	30	50	100	200
Cutting diameter at the upper tolerance limit (maximum diameter bit)	d _{cut,max}	[mm]	6,4	8,45	10,45	12,5	16,5	20,55
Depth of drill hole	h ₁	[mm]	60	70	80	90	110	130
Diameter of clearance hole in fixture	d _f	[mm]	7	9	12	14	18	22
Minimum fixture thickness	t _{fix,min}	[mm]	1	1	1	1	1	1
Maximum fixture thickness	t _{fix,max}	[mm]	25	95	130	265	325	140

Table B2: minimum thickness of concrete member, minimum spacing and edge distances

Size	M6	M8	M10	M12		M16		M20		
Anchor length	L	[mm]				≤ 185	> 185	≤ 185	> 185	
Minimum thickness of concrete member	h Imml 100 100 120		140		160		200			
Minimum spacing	S _{min}	[mm]	40	45	50	75	110	100	120	200
for edge distance	С	[mm]	70	45	50	80	200	190	320	400
Minimum edge distance	C _{min}	[mm]	40				150	130	240	300
for spacing	S	[mm]	80		_	_	210	190	240	350

m2, m2-C, m2-CG

Intended use
Installation parameters
Minimum thickness of concrete member, minimum spacing and edge distances

Annex B 2

Installation instructions		
T	Drilling the hole	,
	Cleaning the hole	
	Fixing plug and building material	
E CONTRACTOR OF THE PARTY OF TH	Tightening with torque wrench and predetermined v T_{inst}	alue of
	Tightened fixation	
m2, m2-C, m2-CG		
Intended use Installation instructions		Annex B 3

Table C1: Design method A, characteristic values under tension load

Anchor size			М6	M8 ²⁾	M10 ²⁾	М1	2 ²⁾	M16	M20		
Anchor length	L	[mm]				≤ 185	> 185				
Installation safety factor	γ2	[-]		1	,0			1,2			
Steel failure											
Characteristic resistance	$N_{Rk,s}$	[kN]	10	19	33	43	43	77	124		
Partial safety factor	γ _{Ms} 1)	[-]				1,4					
Pull-out failure											
Characteristic resistance	$N_{Rk,p}$	[kN]	7,5	12	16	25	25	30	50		
C30/37					1,17						
Increasing factor for N _{Rk,p}	Ψс	C40/50	1,32								
		C50/60	1,42								
Concrete cone failure											
Effective anchorage depth	h _{ef}	[mm]	40	50	58	6	8	80	100		
Spacing	S _{Cr,N}	[mm]	120	150	175	20	05	240	300		
Edge distance	C _{Cr,N}	[mm]	60	75	87	102 120		150			
Concrete splitting failure											
Spacing	S _{Cr,sp}	[mm]	200	250	290	340		400	500		
Edge distance	C _{Cr,sp}	[mm]	100	125	145	17	70	200	250		

¹⁾ In absence of other national regulations.

Table C2: Displacements under tension load

Anchor size			M6	M8	M10	M12	M16	M20		
Tension load	N	[kN]	3,6	5,7	7,6	9,9	11,9	19,8		
D' - I I	δ_{N0}	[mm]	0,3							
Displacement	δ _{N∞}	[mm]	1,3							

m2, m2-C, m2-CG

Performances
Design method A, characteristic values under tension load

Annex C 1

Displacements under tension load

²⁾ valid for clip in annex A2

Table C3: Design method A, characteristic values under shear load

Anchor size			М6	M8 ²⁾	M10 ²⁾	M1	2 ²⁾	M16	M20
Anchor length	L	[mm]				≤ 185	> 185		
Steel failure without lever	arm								
Characteristic resistance	$V_{Rk,s}$	[kN]	4,5	11	18	24	28	33	51
Partial safety factor	γ _{Ms} 1)	[-]	1,5	1,29	1,27	1,25	1,33	1	,5
Steel failure with lever arm									
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	12,0	27	56,8	91,6	104,7	249	486,2
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,5	1,29	1,27	1,25	1,33	1	,5
Concrete pryout failure									
Factor in equation (5.6) of ETAG Annex C 5.2.3.3	k	[-]	1	,0	2,0				
Concrete edge failure									
Effective anchor length under shear load	I _f	[mm]	40	50	58	6	8	80	100
external anchor diameter	d_{nom}	[mm]	6	8	10	1	2	16	20

¹⁾ In absence of other national regulations.

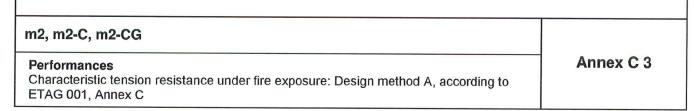
Table C4: Displacements under shear load

Anchor size			М6	M8	M10	M12	M16	M20
Shear load	19	[kN]	1,9	3,5	5,5	7,5	14	21,9
Displacement	δ_{VO}	[mm]	1,6	2,2	2,4	2,7	3,3	3,8
	δ _{V∞}	[mm]	2,4	3,2	3,6	4,1	4,9	5,7

m2, m2-C, m2-CG

Performances

Design method A, characteristic values under shear load Displacements under shear load


Annex C 2

²⁾ valid for clip in annex A2

Table C5: Characteristic tension resistance under fire exposure in uncracked concrete C20/25 to C50/60: Design method A according to ETAG 001, Annex C

Anchor size			M6	M8 M10		M12		M16		M20	
Anchor length L			[mm]		≤ 185 > 185 ≤ 185					> 185	
Partial safety facto	r	$\gamma_{M,fi}^{1)}$	[-]				1	,0	750 NW/W	27,670,327	
Steel failure		7,									
Characteristic	R30	$N_{Rk,s,fi}$	[kN]	0,13	0,25	0,6	1,1	1,1	2,1	2,1	3,6
resistance	R60	$N_{Rk,s,fi}$	[kN]	0,11	0,22	0,5	0,9	0,9	1,6	1,6	2,7
	R90	$N_{Rk,s,fi}$	[kN]	0,09	0,17	0,41	0,7	0,7	1,4	1,4	2,4
	R120	$N_{Rk,s,fi}$	[kN]	0,06	0,12	0,33	0,6	0,6	1,0	1,0	1,8
Pull-out failure											
Characteristic	R30										
resistance in	R60	$N_{Rk,p,fi}$	[kN]	1,9	3,0	4,0	6,3	6,3	7,5	7,5	12,5
concrete	R90										
≥ C20/25	R120	$N_{Rk,p,fi}$	[kN]	1,5	2,4	3,2	5,0	5,0	6,0	6,0	10,0
Concrete cone fai	lure										
Characteristic	R30										
resistance in	R60	N ⁰ _{Rk,c,fi}	[kN]	1,8	3,2	4,6	6,9	6,9	10,3	10,3	18,0
concrete	R90									***	
≥ C20/25	R120	N ⁰ _{Rk,c,fi}	[kN]	1,5	2,5	3,7	5,5	5,5	8,2	8,2	14,4
Embedment depth		h _{ef}	[mm]	40	50	58	68	68	80	80	100
Minimum member thickness		h _{min}	[mm]	100	100	120	140	140	160	160	200
Spacing		Sour	[mm]	4*h _{ef}							
Opaonig		S _{Cr,N,fi}	[mm]	40	45	50	75	110	100	120	200
		[mm]	40	70	50		h _{ef}	100	120	200	
Edge distance <u>c_{Cr,N,fi}</u> Fire exposure from one											
side only	5.10	C _{min}	[mm]	80	100	120	140	140	200	320	400
Fire exposure from than one side	more			≥ 300 mm 32				320	400		

Table C6: Characteristic shear resistance under fire exposure in uncracked concrete C20/25 to C50/60: Design method A according to ETAG 001, Annex C

Anahay aira				NAC	140	8840		40	T	4.0	1100
Anchor size			M6	M8	M10	M	12	M	16	M20	
Anchor length		L	[mm]				≤ 185	> 185	≤ 185	> 185	
Partial safety factor	r	$\gamma_{M,fi}^{1)}$	[-]				1	,0			
Steel failure withou	ut lever	arm									
Characteristic	R30	$V_{Rk,s,fi}$	[kN]	0,20	0,37	0,9	1,7	1,7	3,1	3,1	4,9
resistance	R60	$V_{Rk,s,fi}$	[kN]	0,18	0,33	0,8	1,3	1,3	2,3	2,3	3,7
	R90	$V_{Rk,s,fi}$	[kN]	0,14	0,26	0,6	1,1	1,1	2,0	2,0	3,2
	R120	$V_{Rk,s,fi}$	[kN]	0,10	0,18	0,46	0,8	0,8	1,6	1,6	2,4
Steel failure with I	ever arm										
Characteristic	R30	M ⁰ _{Rk,s,fi}	[kN]	0,08	0,21	0,7	1,4	1,4	3,6	3,6	8,3
resistance	R60	M ⁰ _{Rk,s,fi}	[kN]	0,07	0,19	0,6	1,1	1,1	2,7	2,7	6,2
	R90	M ⁰ _{Rk,s,fi}	[kN]	0,05	0,14	0,44	0,9	0,9	2,3	2,3	5,4
	R120	M ⁰ _{Rk,s,fi}	[kN]	0,04	0,10	0,35	0,7	0,7	1,8	1,8	4,1
Steel failure with I	ever arm							_			
Factor in equation (ETAG 001, Ann. C,		k	[-]	1,0	1,0	2,0	2,0	2,0	2,0	2,0	2,0
Characteristic	R30	1									
resistance	R60	V _{Rk,cp,fi}	[kN]	1,8	3,2	9,2	13,7	13,7	20,6	20,6	36,0
	R90										
	R120	V _{Rk,cp,fi}	[kN]	1,5	2,5	7,4	11	11	16,5	16,5	28,8

Steel failure with lever arm

The initial value $V^0_{Rk,c,fi}$ of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by the following equations with $V^0_{Rk,c}$ initial value of the characteristic resistance in concrete C20/25:

≤ R90	$V_{Rk,c,fi}$	[kN]	$V_{Rk,c,fi}^{0} = 0.25 * V_{Rk,c}^{0}$
R120	$V_{Rk,c,fi}$	[kN]	$V_{Rk,c,fi}^{0} = 0,20 * V_{Rk,c}^{0}$

1) In absence of other national regulations.

m2, m2-C, m2-CG

Performances

Characteristic shear resistance under fire exposure: Design method A, according to ETAG 001, Annex C

Annex C 4